Air traffic control for drones is coming. Here's how it could work
By 2020, an estimated 7 million drones could be zipping around the country delivering packages, taking photos, inspecting infrastructure or conducting search and rescue missions.
But before that happens, they’ll need a system in place to avoid crashing into each other — or worse, passenger aircraft.
NASA, along with the Federal Aviation Administration and an extensive list of industry partners, has been researching the requirements needed to establish a drone traffic management system. This summer, some of those ideas will be tested in the field.
Unlike the current air traffic management system, this one won’t rely on human controllers in towers who bark instructions to incoming and outgoing aircraft. Instead, drone operators will use an electronic system to get access to constraint notifications and input flight information. And they will be expected to follow the rules.
Eventually, the system will be autonomous.
“We needed to look at things that can be done cost-effectively, can be done safely,” said Parimal Kopardekar, principal investigator at NASA for unmanned aerial systems traffic management.
The plan is to finish the research by 2019 and hand over ideas for the FAA to implement no later than 2025.
But the FAA will not be creating the entire electronic traffic management system — that task will largely be handled by companies that are already developing drone navigation and communication software, or drone manufacturers that want to create their own system.
That approach is not unlike the one spelled out for self-driving cars by the Department of Transportation last fall, in which the feds outlined loose safety guidelines but left it to companies to come up with solutions.
Once the rules are set and all drone systems can speak the same language, “that really unlocks the true potential of networked aerial robotics,” said Jonathan Evans, co-president of Skyward, a drone operations software firm that is participating in the NASA project.
The research for the drone system is focused on what’s known as uncontrolled airspace, a lower altitude that isn’t currently managed by air traffic management. However, NASA is also researching how to one day integrate drones into controlled airspace alongside crewed aircraft.
Here’s a look at some of the major requirements — and practical challenges — of drone traffic management.
Speaking a common language
For all this to work, drones will have to “talk” to each other and exchange information.
NASA, the FAA and the industry will have to figure out the exact types of information that need to pass from one type of drone operating system to another. The systems will also need a common communication protocol and consistent cybersecurity practices.
This can get tricky since drone manufacturers and software developers — like makers of self-driving cars and their software — could resist passing potentially proprietary data to rivals. But NASA’s Kopardekar said that industry partners have so far been willing to collaborate and that no company-sensitive data will be shared.
“All of them have a common interest, which is safe access to airspace,” he said.
No comments:
Post a Comment